
IMPROVED IMPRINT AND MERGE FOR CONFORMAL MESHING

David R. White1 and Sunil Saigal2

1Sandia National Labs∗ and Carnegie Mellon University, Pittsburgh, PA, U.S.A. drwhite@sandia.gov
2Carnegie Mellon University, Pittsburgh, PA, U.S.A. saigal@andrew.cmu.edu

ABSTRACT

This paper presents an algorithm for imprinting and merging adjacent parts. Imprint and merge is often used to facilitate
generation of conformal meshes between adjacent parts. The algorithm tolerantly intersects the discretized boundary edges of
adjacent faces to calculate the imprint Boolean. An input tolerance is used during the process to minimize the effect imprinting
has on the meshing process. The topology changes from the imprint are generated using virtual geometry so that tolerant
topology can be used. Several examples demonstrate how the present approach may be utilized to improve the mesh quality of
conformal meshes over multiple parts. The approach is shown to work robustly with misaligned and poorly defined parts.

Keywords: imprint, merge, conformal meshing, tolerant intersections, assembly clean up, R-Tree

∗ Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy
 under contract DE-AC04-94-AL85000

1 INTRODUCTION

The finite element process uses a mesh or grid to
approximate a physical model. The mesh is typically
generated as discretization of a solid model. The solid
models are usually generated by Computer Aided Design
(CAD) packages.

Multiple parts or assemblies are often modeled in a process
which requires mesh generation programs to build conformal
meshes between the different parts. A conformal mesh is one
where assembly parts have shared nodes and elements at
adjacent interfaces. An example of such a mesh is shown in
Figure 1, where there are several parts that have adjoining
interfaces in the assembly. At each of the part interfaces, the
elements and nodes are shared between the parts making the
entire mesh conformal.

A geometry or CAD package is often used to aid conformal
meshing. Geometry or CAD packages have tools to imprint
topology across adjacent faces and curves. The result of
imprinting is that adjacent parts will have coincident or
mirrored topology that can be used to ensure a conformal
mesh. Some meshing packages additionally merge the
coincident topology to make adjacent parts share the same
topology at these locations. Merging allows the topology to
maintain the conformity of the mesh. Some geometry
packages facilitate conformal meshing by allowing parts to
be built with “cellular topology” where adjacent parts already
have been imprinted and merged. This is often difficult since

the parts are typically built individually and would require an
imprint and merge to become cellular.

Figure 1 Conformal Mesh

Loose tolerances or user error from CAD packages often
make conformal mesh generation tedious [1]. Adjacent parts
can either overlap or have unintentional gaps. These overlaps

and gaps make mesh generation difficult and often require
rebuilding part of or the entire solid model for meshing
purposes. Currently, none of the geometry clean-up
techniques [2,3,4,5] fix problems that result from part
interactions. An example of such a case is shown in Figure 2,
where the shape of the parts prevent them from properly
matching with each other, even though they would so match
for modeling purposes. The zoomed regions in this figure
show one of the four sliver surfaces that are created from the
misalignment and the imprint process.

Figure 2 Misaligned Parts (Courtesy of SNL)

This paper presents new imprint and merge techniques that
are tolerant to “dirty” assembly models and that improve the
minimum quality of the mesh that can be created for the
models. Additionally, by combining imprinting and merging
and applying a spatial search tree, imprint and merge
efficiency is improved from O(N2) to O(N) in practice, where
N is the total number of faces in the solid model.

1.1 Conformal Meshing

Conformal meshing can be achieved in a variety of ways
including:

• Mesh Merging

• Imprint and Mesh Mirror

• Imprint and Merge

The first approach, mesh merging, can be achieved either
manually or automatically. The manual approach requires
the user to select regions or even nodes and elements that
should be merged or united. The user is also required to
ensure that similar meshes are generated in regions where
conformity is desired. In this approach, elements on the
boundary between interacting parts are selected. The mesh is
then modified by edge swaps and node insertions until the
overlapping regions are conformal. Both approaches have
their limitations. Manual merging is tedious and does not
scale well for complex assemblies. Automatic merging is
advantageous for unattended mesh generation, but the results
often have unintentional void regions where the mesh does
not properly conform well to the geometry due to the lack of
constraining topology. Automatic merging works for

tetrahedral mesh generation only. Additionally, it is more
difficult to apply boundary conditions such as heat sources
and flow rates because the mesh may not conform to the
original model.

The last two conformal meshing approaches use the
geometric operation of imprinting. Imprinting can be viewed
as a geometric Boolean operation between two solid parts or
faces. The imprint Boolean first calculates the intersection
graph between the two objects. The intersection graph
consists of edges that define how the two objects intersect
each other. The graph is then split into parts that affect each
object. The pieces of the graph are used to split the
boundaries of the object. This will create coincident
topology where the two objects intersect.

An example of imprinting is shown in Figure 3 where a brick
part and a cylindrical part have adjacent surfaces. Figure 3
(a) shows the parts separated before the imprint operation.
Figure 3 (b) shows the two parts together as they are in the
model, and (c) shows how the brick part is modified
topologically through imprinting. With the modifications
from the imprint operation, the brick part and the cylindrical
part can now be meshed conformably.

(a)

(a) (b) (c)

Figure 3 Imprinting

The imprint and mesh mirror approach of conformal meshing
uses the previously discussed imprint Boolean to first make
the adjacent parts topologically equivalent. After imprinting,
the approach then ties the coincident geometry together so
that when one topological entity (face, edge or vertex) is
meshed on one part, the mesh is mirrored to the topology of
the adjacent. The mirrored mesh is then tied back to the
original mesh so that if a conformal mesh is required, only
the original nodes and elements are referenced.

Imprint and merge is similar to the mirror approach except
that rather than mirroring the meshes, the coincident topology
is merged or shared. Merging requires modifying the
topology of the parts. Merging makes both adjacent parts
reference the same topology so that when meshing occurs on
merged entities, both parts reference the same mesh and the
global mesh between the two parts is always conformal.
Imprint and merge can be done simultaneously or separately.
If a third-party geometry package is used for imprinting, the
merge step must be done after all imprinting is complete,
making it necessary to recompute the coincident faces in the
model. If the imprinting is controlled locally, imprint and
merge can be done at the same time. Both forms of
imprinting and merging or mesh merging have their
advantages and disadvantages. Imprint and merge, however,
is a cleaner and less confusing interface to the user and is
therefore preferred by most meshing packages.

1.2 Imprinting

Mesh generation programs generally obtain their imprints
either in an external geometry package or through face-face
intersections. An external geometry package provides the
entire imprint operation and is self-contained. When using
face-face intersections, meshing packages must generate the
imprint after receiving the intersection graph of two faces.

1.2.1 External Geometry Package

For meshing packages, the most common source of the
imprint Boolean is the underlying geometry engine. This
engine can be created in-house or as a third-party package.
The engine performs CAD modeling and interpretation for
the meshing package and usually contains some form of the
imprint Boolean at the part or surface level. The authors are
most familiar with the ACIS 3D modeling toolkit [6].
Imprinting in this system is done at the part level. Imprints
performed in a third-party package are only as accurate as the
geometry package (1e-6 for ACIS) and provide little control
of the result from the imprint. Most packages allow the
tolerance to be changed; however, often the models become
unstable and unpredictable after performing operations with a
larger tolerance [7].

1.2.2 Face-Face Intersections

A second option for meshing packages is to perform face-
face intersections to generate the imprint Boolean. These can
be performed either through a third-party package or a home
grown geometry system such as a facet-based approach [8,
9]. With the result of the intersection graph from the face-
face intersection, the meshing package can selectively modify
the graph and apply it to the imprint targets. This requires
either modifying the geometric model itself or using “virtual
geometry” [5, 10] layered on top of the model to represent
topology changes. Three roadblocks can discourage taking
the intersection graph from face-face intersections and
creating an imprint. They are:

i. Geometry package must be able to support
radically tolerant topology.

ii. Virtual geometry prevents further part
modifications through a third-party package.

iii. Tolerant surface-surface intersections are
unreliable and difficult to compute.

Roadblock “i” occurs if the topology modifications from the
imprint are large enough. In this case, the geometry engine
may cease to function properly for the modified parts. For
instance, to fix the interactions of the parts shown in Figure
2, topology must be moved a distance of .1 from the original
location. The effect of this adjustment on the geometry
engine may be terminal when additional intersections or
operations are performed on the part. This roadblock can be
overcome by using a system like virtual geometry rather than
a CAD engine.

Roadblock “ii” can occur if virtual geometry is used to
modify the parts. While virtual geometry handles the
tolerance issues from the first roadblock, a second problem

occurs when trying to modify the same part with additional
imprints from other parts. By definition, the virtual geometry
modifications do not interact with third-party geometry
engines. If the geometry engine is homegrown or facet
based, the third roadblock may come into play.

Roadblock “iii” is that the intersections required for
imprinting need to be calculated with a geometric tolerance
that can often be large with respect to features within the
faces. With mesh generation, the geometric representation
only needs to be good enough for the given mesh resolution.
For some parts, that can be several orders of magnitude
different from the tolerance at which the part is defined
geometrically. Additionally, tolerant intersections can be
difficult to compute. For example, if the intersection is
performed by faceted representations, polyhedron may be
required to represent the facets tolerantly. For more exact
surface representations the results of changing the tolerance
can be unpredictable.

Based on the previous discussions of conformal meshing and
imprinting the next section describes the new imprint and
merge algorithm.

2 BOUNDARY IMPRINTING

The main topic of this paper involves a new method for
imprinting. The algorithm uses the boundary edges of the
faces rather than actual face-face intersections. This method
avoids all three of the roadblocks from the previously
discussed face-face intersection imprint option (section
1.2.2), and the problems with using an external geometry
package (section 1.2.1). Boundary imprinting uses virtual
geometry to support radically tolerant topology. Curve
intersections are easy to implement in meshing packages that
rely on third-party geometry engines. They can be used with
virtual geometry without preventing further modifications.
Finally, tolerant boundary intersections can be computed
reliably and easily.

There is some functionality lost when solely utilizing
boundary intersections. With boundary or curve
intersections, the only imprints created will be those between
faces that have edge or vertex topology near the intersection
locations. The boundary imprint will not affect intersecting
faces when the intersection occurs only interior to the faces
and away from the edges of the faces. Three cases that will
not imprint in boundary imprinting have been identified and
are shown in Figure 4. Extreme overlap is shown in Figure 4
(a), where the overlap is beyond the tolerance of the imprint
operation. Figure 4 (b) shows two spheres where the faces
intersect internally but no lower order boundaries intersect.
Case (c) shows a situation where the two faces intersect at
both the boundaries and through a degenerate line
intersection that occurs between the inner portions of the
faces. While these situations may be significant for other
imprint uses, they are not important for conformal meshing.
All of these cases can be handled by real face-face
intersection based imprinting.

(a) (b) (c)

Figure 4 Boundary Imprint Cases Not Handled

Boundary imprinting is an alternative method for imprinting
two adjacent faces. The term “boundary” refers to the
boundaries of the faces, or in other words, the edges. The
goal of boundary imprinting is to tolerantly and robustly
achieve the results of an imprint Boolean between two faces.
This section discusses how that goal is achieved. The new
imprint algorithm consists of the following five steps:

1. Discretize the Boundary

2. Intersect Line Segments

3. Build Partial Intersection Graph

4. Construct New Edges

5. Split Old Edges and Faces and Merge New Faces

For steps 4 and 5 the algorithm relies on the underlying
geometry engine to create edge topology and geometry from
line segments and to tolerantly connect edges. Additionally,
step 5 requires the geometry engine to be able to split or
partition a face given a set of edges that splits it. The authors
used the CUBIT Mesh Generation Toolkit [11, 12] for this
work, where all of these prerequisites are available through
the Common Geometry Module or CGM [13]. Within the
CGM, a virtual geometry capability is available that allows
local topological modifications and is able to generate curve
geometry based on segmented data. Kraftcheck describes the
virtual geometry capability [10].

In addition to two faces, the desired tolerance must be
supplied to the boundary imprint algorithm. This absolute
tolerance is used to determine whether entities during the
imprint are touching. Choosing the tolerance is important.
The tolerance determines which features in the imprint are
resolved and which are ignored. For this reason, the
algorithm assumes that the user will supply the tolerance.
Examples in section 4.1 demonstrate how the tolerance
affects the imprint results.

2.1 Discretize the Boundary

The first step in the boundary imprint algorithm is to
approximate the boundaries of the two input faces. Rather
than calculating the exact intersections between the boundary
edges, which may be different for different geometry

representations, the boundary is approximated by line
segments and points. This step can be accomplished by
either using the graphics faceting or by creating a new set of
segments similar to edge meshing.

The discretization needs to ensure that the segments are not
smaller than the input tolerance. If they are smaller than the
tolerance, instability will be introduced in the intersection
step of the algorithm. A discretization of approximately 2.5
times larger than the input tolerance was seen to ensure
stability during the intersection step.

The line segments and points that are created during this step
are used to store information about the intersection in step 2,
which will be used later in steps 3, 4 and 5. The following
three data values are stored on the segment points:

• Original Topology Owner (Vertex or Edge)

• Point Type Classification

• Matching Point

The original topology owner value is set to point to the edge
or vertex to which the point approximates.

The point type classification value is an enumerated integer
value that can have the following values:

• ON_BOUNDARY_1

• ON_BOUNDARY_2

• VERTEX_ON_BOUNDARY_1

• VERTEX_ON_BOUNDARY_2

• CREATE_NEW_VERTEX

• ON_BOTH_BOUNDARIES

• VERTEX_ON_BOTH_BOUNDARIES

Originally, this value is set according to its original topology
owner. For example, if the point is on the first face, and it
represents a point on one of the boundary edges, the point
type classification value of the point would be set to
ON_BOUNDARY_1.

The matching point value is initially left unset and does not
get set until the point is determined to be spatially equivalent
to a point on the other face.

The line segments also carry the original topology owner
information. The line segment is additionally used as a
doubly linked list, and therefore carries pointers to the next
and previous line segments on the boundaries. A linked list
structure is used rather than an array based list because of the
number of insertions and deletions that occur during the
intersection process. The linked lists allow local
modification at a performance cost of constant time O(C).
The list information is important to track since it will be
modified during step 2 and used in each of the following
steps. The head of each segment loop on each boundary is
then stored in an array. Once the point and segment data has
been obtained, the next step is intersecting the segment loops
of the two faces.

2.2 Intersect Line Segments

Each line segment is intersected with the segments closest to
it from the other face. This can be done efficiently by using
an R-Tree data structure, which is discussed in section 3.
Alternatively, the intersections can be done using a brute
force approach which has O(N^2) running time where N is
the total number of line segments.

Since the line segments are three-dimensional, the segments
may not actually intersect. The input tolerance is used to
place a “hotdog” shaped buffer zone around each segment.
Overlaps in the “hotdog” space between segments constitute
an intersection. Overall, there are 27 ways the segments can
interact. These 27 cases are shown in Figures 5, 6, 7, 8, 9 and
10.

0 1

2 3

SEGS_EQUAL_0_2
0 1

2 3

SEGS_EQUAL_0_2

NO_INTERSECT

0

1

2

3

CROSS_INTERSECT

0

12

3

Figure 5 Equal, No Intersect and Cross Intersect
Cases

1

0

2

3

1

0

3

2

0

1

2

3

2

1

3

2

L_INTERSECT_0_2 L_INTERSECT_0_3

L_INTERSECT_1_3L_INTERSECT_1_2

Figure 6 L Shaped Intersection Cases

0 1
2 3
OVERLAP_JOIN_02_3_1

2 3
0 1
OVERLAP_JOIN_02_1_3

3 2
0 1
OVERLAP_JOIN_03_1_2

0 1
3 2
OVERLAP_JOIN_03_2_1

1 0
2 3
OVERLAP_JOIN_12_3_0

2 3
1 0
OVERLAP_JOIN_12_0_3

3 2
1 0
OVERLAP_JOIN_13_0_2

1 0
3 2
OVERLAP_JOIN_13_2_0

Figure 7 Joined and Overlapping Cases

0

1

2

3

1

0

2

3

2

3

0

1

3

2

0

1

T_INTERSECT_1

T_INTERSECT_0 T_INTERSECT_2

T_INTERSECT_3

Figure 8 T Shaped Intersection Cases

0 12 3
0 13 2

2 31 02 30 1

OVERLAP_ALL_0_2_3_1 OVERLAP_ALL_0_3_2_1

OVERLAP_ALL_2_0_1_3 OVERLAP_ALL_2_1_0_3

Figure 9 Total Overlap Intersection Cases

0 1
3 2

OVERLAP_PART_0_2

0 1
2 3

OVERLAP_PART_0_3

1 0
3 2

OVERLAP_PART_1_2

1 0
2 3

OVERLAP_PART_1_3

Figure 10 Partly Overlapping Intersection Case

To determine which intersection case is occurring, the end
points are first checked to see if they are spatially within the
input tolerance. If any of the points are equal, the
intersection type can be one of three cases SEGS_EQUAL
(Figure 5), L_INTERSECT (Figure 6) or OVERLAP_JOIN
(Figure 7). If this situation occurs, points that are spatially
equivalent are marked as matching points. If one of the points
was originally owned by a vertex, the point not owned by a
vertex has its point classification value set to
CREATE_NEW_VERTEX. If both their owners were
originally vertices, they are both marked as
VERTEX_ON_BOTH_BOUNDARIES. If vertices owned
neither of the two, then it cannot be determined at this time if
the boundaries are actually intersecting or overlapping. The
point types are then marked as ON_BOTH_BOUNDARIES.

If just two of the points are equivalent, then the intersect case
must be an OVERLAP_JOIN or a L_INTERSECT. The
points that are not equivalent are then tested to see if they are

geometrically “on” the other line segment. This is calculated
by first computing the closest point from that point to the line
segment. The closest point computation is described in [14]
and is also described here as follows.

Two line segments, {P0,P1} and {P2,P3} are shown in Figure
11. It is to be determined if the point P3 lies “on” the
segment {P0, P1}. The closest point, Q, to P3 on the segment
{P0, P1} is found as:

)(010 PPbPQ −∗+= (1)

where:















−
−•−=

01

0103)()(

PP

PPPP
b (2)

Because these equations apply to lines, b is restricted to lie
within the domain (0,1). If b is outside this domain the
following conditions are applied:

1

0

,0

,0

PQb

PQb

=→≥

=→≤
 (3)

The point (P3) is considered to lie on the segment {P0, P1} if
the new point (Q) is within tolerance to it. If the point P0 or
P1 lies within tolerance of point P2, then the
OVERLAP_JOIN case results and the new point Q is used to
split the segment. The new point, Q, and point P3 are marked
as either ON_BOTH_BOUNDARIES, or
CREATE_NEW_VERTEX depending on the topology
owner of P3. If the points P3 and Q are not within tolerance
of each other, the L_INTERSECT case results and the points
that are equivalent are marked as
ON_BOTH_BOUNDARIES or CREATE_NEW_VERTEX,
depending on the topology owners of both points.

P0

P2

P3

P0

P1

Q

QP1

P3

P2

Top View Side View

Figure 11 Closest Point on Segment

If none of the segment end points are spatially equivalent,
then all the points are tested to see if they lie “on” the
segment. This is computed through equations (1), (2) and (3)
and shown in Figure 11. If any of the points are on the other

segment, the result is T_INTERSECT (Figure 8),
OVERLAP_PART (Figure 10) or OVERLAP_ALL (Figure
9). These cases are distinguished by simply knowing which
points intersect with which segments. For the
T_INTERSECT case, the point (P3) and the new point (Q) are
both set to have point classification types of
CREATE_NEW_VERTEX. This is known because the
T_INTERSECT case can only occur if the boundaries are
truly intersecting and not overlapping. For
OVERLAP_PART and OVERLAP_ALL, the point
classification types cannot be fully resolved similar to
previously discussed cases. For any point (Q) that is found,
the line segment on which it lies ({P0, P1}) is split into two
new segments. The linked list data is adjusted accordingly.

Finally, if none of the points are on the other test segment,
and if none of the points are equivalent, the lines are tested to
be crossing as shown in Figure 5. The intersection is
calculated by determining the closest point on each line
segment. Finding the intersection between two segments is
described in [14,15] and is now restated here in terms of
tolerant intersections.

Top View Side View
P0

P1 P2

P3

P0

P1

P3

P2

Q, R

Q
R

w(sc,tc)

Figure 12 Closest Points Between Two Segments

For the two segments {P0, P1} and {P2, P3} shown in Figure
12, compute the closest points, Q and R, between them. The
parametric equations (4) and (5) for each line segment are
given as:

tPPPtL

sPPPsL

*)()(

*)()(

2322

0101

−+=
−+=

 (4)

The distance between two points, Q and R, on these lines is
given as:

)()(),(12 cccc sLtLtsw −= (5)

Minimizing this equation and solving for the variables sc and
tc (the parametric locations of the points Q and R) yields the
following equations that can be used to solve for Q and R as:

2bca

dceb
sc −∗

∗−∗= and
2bca

dbea
tc −∗

∗−∗= (6)

where:

a=|P1-P0|, b=(P1-P0)• (P3-P2), c=|P3-P2|, d=(P1-P2)• (P0-P2)

and e=(P3-P2)• (P0-P2)

The parametric values sc and tc are restricted to the interval
(0,1) in the same way as b in Equation (3).

If the two closest points, Q and R, are within tolerance then
the segments are intersecting. The two closest points are then
used to split each segment into two new segments. The new
points are marked as CREATE_NEW_VERTEX point
classification types. If the new points are not within
tolerance, then the segments are not intersecting and the next
two segments are tested. The intersection process continues
until all the segments have been tested.

After the intersection process is complete, the loops of
segments are traversed sequentially to resolve the point
classification type values for the points with point
classification values of ON_BOTH_BOUNDARIES. Once
this is finished, the segment loops are ready to be sorted into
the partial intersection graph used for splitting the faces.

2.3 Build Partial Intersection Graph

The full intersection graph can now be calculated from the
modified segment loops. The full intersection graph is not
needed here because some of the information required from
the full graph was already calculated during the intersection
step. At this point, for each face, the only needed portions of
the graph are those that do not overlap the boundary and are
geometrically “on” the face. This part of the intersection
graph will be used to split the faces. The portion of the graph
that overlaps the boundary of the face is usually needed to
imprint the vertices across the faces. This has actually
already occurred and is stored in the point classification data
on the imprint points.

The partial intersection graph for face 1 is obtained by
traversing the loops segments of face 2. If a point is found to
have a point classification value of
CREATE_NEW_VERTEX, then this point may be the start
or end of a needed portion of the intersection graph. Whether
or not it is the start of a needed portion of the graph is
determined by looking at the points prior to and next to it. If
the next or previous points are not overlapping face 1 and are
within face 1 geometrically, then that portion of the
segment’s loop is part of the needed intersection graph for
face 1. The portion of segments added to the graph will be
between two points that have point classification values of
CREATE_NEW_VERTEX. This process is continued until
all the segment loops of face 2 have been traversed. The
process is repeated for face 2 where the loops of face 1 are
traversed over face 2. Special cases where the segment loops
do not intersect but are on the face are also handled at this
point. These special loops are added entirely to the partial
intersection graph. After this process, the partial intersection
graph for each face can be used to construct new model edges
for the faces.

2.4 Construct New Edges

The partial intersection graphs are used to create segmented
geometric curves. These curves approximate portions of
edges from opposite faces. The segmented curves are
assumed to approximate the boundaries with sufficient

accuracy for mesh generation. This also assumes that the
input tolerance is smaller than the mesh size. The edges
represented by segmented curves are created in the geometry
engine. Again, for the present implementation this was done
using the virtual geometry engine to maintain independence
of the underlying modeling kernel. Once the new edges
representing the partial intersection graph have been created,
the two faces can be split accordingly.

2.5 Split Old Edges and Faces and Merge
New Faces

With the new edges defining the intersection graph and the
points from the segment loops that define vertex imprints, the
actual imprint can occur. The boundary edges are first split
or partitioned according to points on the boundary that are
marked CREATE_NEW_VERTEX. Once this occurs, the
partial intersection graph is merged with the boundary of the
face. The partition utility of the virtual geometry engine is
then used to split the face according to the graph. This is
repeated for both faces, and the boundary imprint operation is
complete. The following section describes the imprint
process with an example to better clarify the algorithm. After
the imprint is complete, new faces that are now completely
coincidental, both geometrically and topologically, are
merged or consolidated.

2.6 Boundary Imprint Example

A simple example will now demonstrate the imprint process.
This example will consider two square faces that overlap.
The faces and their trivial discretization are shown in Figure
13. This figure also shows how the point classification type
is set for the segment points.

VERTEX_ON_BOUNDARY_2

VERTEX_ON_BOUNDARY_1

1 2

34

5

6 7

8

CREATE_NEW_VERTEX

Facet Boundary

Face 1

Face 2

Figure 13 Example: Discretizing the Boundary

Following discretization, the segments are intersected. This
process is shown in Figure 14. Here, four new vertices, 9,
10, 11 and 12 are created through the
CROSS_INTERSECTION case where segments {2,3} and
{6,7} and {1,2} and {5,6} intersect. Nodes 9, 10, 11 and 12
are marked as CREATE_NEW_VERTEX point classification
types.

Figure 14 Example: Intersection

Following the intersection step, the partial intersection graph
is constructed. The example will follow this process for face
1; the process for face 2 is similar. The partial intersection
graph is obtained in Figure 15. For face 1, the partial
intersection graph consists of segments {12,6} and {6,10}
from the boundary of face
2.

1 2

34

9

11

1 2

34

9

11
6

10

12

10

126 7

5 8

Find Partial Intersection Graph for Face 1

Figure 15 Example: Partial Intersection Graph

Once the partial intersection graph is found, new edges can
be created. For this example, the edges are simple; they are
each one line segment. For more realistic examples there can
be many segments for each new edge. Once the edges are
created, they are used to partition face 1 into two new faces.
This process is shown in Figure 16.

1 2

34

9

11
6

10

12

Create Edges Partition Faces

Figure 16 Example: Edge Creation and Partitioning

This example shows how the new boundary imprint
algorithm works for two simple faces. For more complex
faces the boundary imprint algorithm calculates tolerant, real,
3D face boundary intersections. Tolerant intersection

calculations are used to allow loosely overlapping surfaces to
conform. When large assemblies and complex surfaces are
present, the described algorithm uses a spatial tree to improve
performance. This is now discussed in the following section.

3 R-TREES IN BOUNDARY IMPRINTING

Two performance issues arise in performing boundary
imprints. The first is in the imprint process itself. During the
intersection step of the imprint process, the line segments
must be intersected against other close segments from a
different face. The trivial method is to intersect every
segment on face 1 with every segment on face 2. This
method yields an O(M*L) run time performance where M is
the number of segments in face 1 and L is the number of
segments in face 2.

The second problem occurs when there are many faces to be
imprinted in the model. Here the trivial method will produce
a run-time performance of O(N^2) where N is the total
number of faces in the model. For both of these cases, the
time results can be tedious to users.

An R-Tree developed by Guttman [16] is used to overcome
these problems. The authors found the R-Tree in practice to
have a run-time performance of O(N) for the second problem
and O(H) for the first, where H is the average number of
segments in both faces. The R-Tree is a height-balanced,
multi-dimensional, dynamic, spatial access tree. Unlike other
spatial trees like octrees or kd-trees, the R-Tree supports
multi-dimensional data like three-dimensional faces and
segments. The R-Tree approximates this data with close fit
bounding boxes.

The R-Tree works by inserting each entity into the tree. The
entity is placed in a leaf node with sufficient space. The leaf
nodes have a number of data nodes between size m and M.
For this implementation m was chosen to be two, and M to be
five, though these values may not be optimal. As the entity is
inserted, the bounding boxes of the leaf node and parent node
are updated to contain the new entity. If there are no spaces
left to insert new data, the leaf node with the closest
bounding box is split in half. The splitting portion of the R-
Tree is the most significant part of the algorithm because it is
this phase that ensures the balanced nature of the tree.
Guttman proposed several approaches for node splitting and
determines the quadratic split approach to be optimal. The
quadratic split is used here. The quadratic split minimizes the
waste of the bounding boxes by the two new covering nodes.
Other trees such as the R*-Trees [17] may achieve a higher
optimality, though such approach was not attempted here.
Node deletion is performed in a similar way to insertion.
Searching the tree is similar to searching any binary search
tree [18]. The one caveat to the R-Tree, and the reason only
O(N) is achieved in practice and why O(N^2) can occur, is
that during the search, all children that overlap with the
search space must be traversed.

The memory required for the R-Tree is O(logmN), where m
is the minimum size of the children (two for our case) and N
is the number of entries.

1 2

34

5

6 7

8

1 2

34

9

11

10

126 7

5 8

Intersection

In practice the R-Tree performs very well. In Figure 17 a
graph is shown comparing the trivial method versus the R-
Tree for face merging, which is similar to the face-face
imprinting problem.

Search Times

y = 0.02x2.02

y = 0.02x0.97

0

50

100

150

200

250

0 2000 4000 6000
Surfaces

C
P

U
 S

ec
o

n
d

s

RTree

No
Tree

Power
(No
Tree)
Power
(RTree
)

Figure 17 R-Tree Performance

The R-Tree effectively decreases the run time for the new
imprint and merge algorithm. The algorithm is still slightly
slower than commercial geometry packages that provide
imprinting; however, this is probably due to the relative
newness and non-optimized aspects of the algorithm. The
improved results significantly outweigh this drawback.
Additionally, an R*-Tree which claims a 50% speed
improvement over the R-Tree could be implemented if this
problem remains an issue.

4 CONCLUSION

Boundary imprint and merge can be used to ease the often-
tedious chore of conformal meshing. The tolerant process of
boundary imprinting improves the solid model for meshing
where parts are not aligned properly. Several examples of
this are now shown as part of the results of this work.

4.1 Results

The purpose of imprinting and merging during the meshing
process is to obtain a conformal mesh. Often, this process is
difficult due to poorly aligned parts and CAD operator error.
The following examples demonstrate how boundary
imprinting improves this process.

 The first example, shown in Figure 18, shows the results of
imprinting the two parts in Figure 2 with both boundary
imprinting and with the ACIS geometry engine. The results
are then meshed conformally. Figure 18 indicates how
imprinting affects the quality of the mesh. With the ACIS
imprint a ledge is maintained where the parts are misaligned
while the tolerant boundary imprinting removes that ledge
from the model.

Min Scaled Jacobian: .57Min Scaled Jacobian: .0041

Regular Imprint Tolerant Imprint

Figure 18 Example 1 of Tolerant Imprinting vs.
Normal Imprinting

The next example, shown in Figure 19, more explicitly shows
how the face topology is modified differently for tolerant
imprinting. Here, two cubes of different sizes are placed next
to each other. The top face of the smaller cube is slightly
(0.05 units) below the top face of the larger cube. The parts
are imprinted with the ACIS geometry engine and the tolerant
boundary imprint algorithm with an input tolerance of 0.5.
The new algorithm produces topology such that the top face
of the large surface is connected through an edge to the top
face of the smaller face. The ACIS imprint produces a small
gap between the two top faces. This example demonstrates
how imprinting affects slightly misaligned parts. Despite the
misalignment, the tolerant imprint algorithm produces a clean
connection between the two parts.

.05

Tolerant Imprint

Regular Imprint

Figure 19 Example 2 of Tolerant Imprinting vs.
Normal Imprinting

The parts were mesh with hexahedral elements with a size of
1.0 in the CUBIT Mesh Generation Toolkit. A zoom in of
the top faces is shown in Figure 20. The parts that are
imprinted with the ACIS imprint cannot be meshed with
acceptable quality without reducing the mesh size. Figure 20
also shows how the mesh conforms to the tolerant shape.

Regular Imprint

Min Scaled Jacobian: -.83 Min Scaled Jacobian: .94

Tolerant Imprint

Figure 20 Meshes of Example 2

The next example shows how the boundary imprint tool can
be used to aid meshing of parts that meet tangentially. This
example is seen in Figure 21. This example shows two parts,
a brick and a cylinder, stacked on top of each other. A square
face of the brick and circular face from the cylinder are
adjacent. The regular imprinting that is done with ACIS
produces four faces that contain edges that meet tangentially.
Tolerant boundary imprinting also produces similar four
faces, but the topology and geometry of the edges that bound
the faces is modified such that no edge meets tangentially.
Again, the quality of the resulting mesh is shown to
emphasize the improvement of boundary imprinting.

Min Scaled Jacobian.: .49Min Scaled Jacobian: .095

Tolerant ImprintRegular Imprint

Figure 21 Example 3 of Tolerant Imprinting vs.
Normal Imprinting

The final example demonstrates the robustness of the imprint
boundary algorithm. The example has two faces from parts
in an assembly used at Sandia National Laboratories. The
faces, shown in Figure 22, are roughly on top of each other,
but the definition of the faces makes them poorly aligned, as
shown in the “zoom-in” pictures of Figure 22.

Figure 22 Poorly Aligned Surfaces (Courtesy of
SNL)

Figure 23 shows the results of the imprinting process using
the ACIS geometry engine for imprinting, a facet-based
intersection algorithm from Los Alamos [19], and boundary
imprinting. Both the ACIS and the facet-based imprints fail
because of the ill-aligned/defined faces. The boundary
algorithm successfully imprints the two faces.

Imprint Result from ACIS

Result from Faceted Intersection Result from Boundary Imprint

Original Overlapping Faces

Figure 23 Results of Imprinting Poorly Overlapping
Faces

The boundary imprint algorithm works well to clean up
misaligned and poorly defined adjacent parts for conformal
meshing. The algorithm takes discretized segments of the
boundary edges and intersects them to produce an
intersection graph to split overlapping faces. The
calculations are performed tolerantly to ensure that overlaps
are properly maintained and that only the intended face
splitting occurs. Utilizing the R-Tree to find close faces and
segments enhances the efficiency of the boundary imprint
algorithm.

4.2 Future Research

The major contribution of the boundary imprint algorithm is
the ability to simply calculate tolerant intersections for three-
dimensional faces. The boundary imprint algorithm does not
do this exactly because only the edges are taken into
consideration. Future research could include the following
options:

• Calculate automatic tolerance

• Improve facet-based intersections to calculate
tolerant intersections

• Improve exact intersections to calculate tolerant
intersections

If the intersection graph can be calculated tolerantly in either
of the two previous methods, results similar to the boundary
imprinting code could be shown. Additionally, using a
virtual geometry capability to perform the actual imprint of
the intersection graph would allow the graph to be cleaned
for meshing purposes. This is a major benefit to
implementing the imprint operation within the meshing
package itself. Any future research should continue to allow
this modification from within the meshing package, where
the problems with mesh generation are best known.

5 REFERENCES

[1] White, D. R., R. W. Leland, S. Saigal, and S. J. Owen,

"The Meshing Complexity of a Solid: An
Introduction", Proceedings, 10th International
Meshing Roundtable, Sandia National Laboratories,
pp.373-384, October 7-10 2001.

[2] Tautges, T. J., "Automatic Detail Reduction for Mesh

Generation Applications", Proceedings, 10th
International Meshing Roundtable, Sandia National
Laboratories, pp.407-418, October 7-10 2001.

[3] Mezentsev, A., “Methods and Algorithms of

Automated CAD Repair For Incremental Surface
Meshing”, Proceedings, 8th International Meshing
Roundtable, Sandia National Laboratories, pp. 299-
309, October 1999.

[4] Mobley, A. V., M. P. Carroll, and S. A. Canann, “An

Object Oriented Approach to Geometry Defeaturing
for Finite Element Meshing”, 7th International Meshing
Roundtable, Sandia National Laboratories, pp. 547-
563, October 1998.

[5] Sheffer, A., T. Blacker, J. Clements, and M. Bercovier,

“Virtual Topology Operators for Meshing”,
Proceedings 6th International Meshing Roundtable,
Sandia National Laboratories, pp. 49-66, October 1997.

[6] http://www.spatial.com, May 2002

[7] Jackson, D. J., “Boundary representation modeling

with local tolerances”, Proc. of the Third Symposium

on Solid Modeling and Applications, 1995, Salt Lake
City, 1995, pp 247-253.

[8] Laidlaw, D. H., W. B. Trumbore, and J. F. Hughes,

“Constructive Solid Geometry for Polyhedral Objects",
Computer Graphics, 20, 4, 161-170 (1986).

[9] Hubbard, P. M., "Constructive Solid Geometry for

Triangulated Polyhedra", Brown University Technical
Report No. CS-90-07, 1990.

[10] Kraftcheck, J., “Virtual Geometry: A Mechanism for

Modification of CAD Model Topology For Improved
Meshability”, Published Master Thesis, University of
Wisconsin at Madison, December 2000.

[11] Blacker, T.D., “CUBIT Mesh Generation Environment
 Users Manual Vol. 1”, SAND94-1100, Sandia National

Laboratories, Albuquerque, NM, 1994.

[12] CUBIT Mesh Generation Tool Suite: Automatic

Unstructured Hex, Tet Quad and Tri Meshing and
Solid Model Geometry Preparation. Web Site:
http://endo.sandia.gov/cubit (May 2002).

[13] Tautges, T. J., "The Common Geometry Module

(CGM): A Generic, Extensible Geometry Interface",
Proceedings, 9th International Meshing Roundtable,
Sandia National Laboratories, pp.337-348, October
2000.

[14] Bowyer, A. and J. Woodwark, “A programmer’s

geometry”, Butterworths, 1983, pp. 47-53.

[15] O’Rourke, J., Computational Geometry in C,

Cambridge University Press, 2nd Edition, 1998, pp.
220-226.

[16] Guttman, A., “R-Trees: A Dynamic Index Structure for

Spatial Searching”, Proceedings, SIGMOD
Conference, Boston, June 1984, pp. 47-57.

[17] Beckmann, N., H.-P. Kriegel, R. Schneider, and B.

Seeger, “The R*-tree: An efficient and robust access
method for points and rectangles”, Proceedings ACM
SIG-MOD International Conference on Management
of Data, 1990, pp. 322-331.

[18] Weiss, M. A., Data Structures & Algorithm Analysis in

JAVA, Addison-Wesley, 1999, pp. 109-112.

[19] Fowler, J., http://www-xdiv.lanl.gov/x8/oso/

